
Chapter 1

Spaces

1.1 Fields

Definition 1.1. A field is a 5-tuple (F,+, ·, 0, 1) satisfying the following:

1. F is closed under the + and · binary operations.

2. 0, 1 ∈ F and 1 ̸= 0.

3. (F,+, 0) is an abelian group.

4. • αβ = βα for all α,β ∈ F.
• α(βγ) = (αβ)γ for all α,β, γ ∈ F.
• α1 = α for every α ∈ F.
• For every α ̸= 0 in F, there exists α−1 ∈ F such that αα−1 = 1.

5. α(β+ γ) = αβ+ αγ for all α,β, γ ∈ F.

Exercise 1.

1. Prove that α−1 (when α ̸= 0) and −α are unique for a given α ∈ F.

2. Show that 0α = α0 = 0 for all α ∈ F. (Hint: 0 + 0 = 0). Show that αβ = 0 if and only if α = 0 or
β = 0.

3. Show that 0 and 1 are unique, in the sense that if (F,+, ·, 0, 1) and (F,+, ·, 0 ′, 1 ′) are both fields,
then 0 = 0 ′ and 1 = 1 ′. The following can help us prove that an object is not a field: suppose
that (F,+, ·, 0, 1) is not a field, but 0 and 1 satisfy α + 0 = α and α1 = α for every α ∈ F, then
(F,+, ·, 0 ′, 1 ′) is not a field for any 0 ′, 1 ′ ∈ F. Prove that N, Z are not fields.

4. Suppose that F is a field. Define 1c to be the sum of 1 with itself c times, where c ∈ N. Prove that
1c = 0 for some c, and that the smallest such c must be prime. (Hint: αβ = 0 =⇒ α = 0 or
β = 0).

In what follows, we call the elements of a field scalars.

1.2 Vector Spaces
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Definition 1.2. A vector space over field F is a 4-tuple (V,+, ·, 0) satisfying the following:

1. V is closed under + : V × V → V and · : F× V → V .

2. (V,+) is an abelian group.

3. α(βv⃗) = (αβ)⃗v for all α,β ∈ F and v⃗ ∈ V .

4. 1⃗v = v⃗ for all v⃗ ∈ V .

5. (α+ β)⃗v = αv⃗+ βv⃗ for all α,β ∈ F and v⃗ ∈ V .

6. α(⃗v+ w⃗) = αv⃗+ αw⃗ for all α ∈ F and v⃗, w⃗ ∈ V .

In what follows, we call the elements of a vector space vectors. If the underlying field is R, we shall call
the space a real vector space. Similarly we have complex vector spaces and rational vector spaces.

Example 1.

1. Cn is a complex vector space under the natural + and · operations. We shall refer to Cn as
n-dimensional complex coordinate space. Similarly Fn is a vector space over F. Note that Cn is a real
vector space but Rn is not a complex vector space.

2. The set Pn of polynomials of degree at most n−1 is a vector space with + and · being the addition
and scalar multiplication operations on polynomials.

3. O = {0} is a trivial vector space over any field F.

From now on, we shall use 0 to denote 0. This should not be confused with the scalar 0. To make matters
worse, 0 will also be used to denote the trivial linear functional and linear transformation. Fortunately these
relations among the various interpretation of 0 are such that, after this word of warning, there should be no
confusion from this practice.

Exercise 2.

1. Prove that −v is unique for a given v ∈ V .

2. Show that 0v = 0 for all v ∈ V . Prove that αv = 0 if and only if α = 0 or v = 0.

1.3 Linear dependence
In what follows, when we speak of a set of vectors {xi}, we admit the possibility of two different indices
corresponding to the same vector. That is, what is important is not which vectors appear, but rather how
they appear.

Definition 1.3. A finite set of vectors {xi} is linearly dependent if there exist a corresponding set {αi} of
scalars, not all zero, such that ∑

i

αixi = 0.

If on the other hand,
∑

i αixi = 0 implies that αi = 0 for each i, the set is linearly independent.

We shall adopt the abbreviation LD for linearly dependent and LI for linearly independent. Note also
that the empty sum is 0, and so the empty set of vectors is LI.

The reason for the word dependent is as follows: suppose that {xi} is LD, and fixing i say αi ̸= 0. Then
we can write xi as a (linear - only using +) combination of the (scaled versions of) other vectors in the set. In
this sense, xi is dependent on the other vectors in the set.
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Remark. Note that the empty set of vectors being linearly independent is useful, because using this, any
finite set of vectors is either linearly dependent or linearly independent.

Exercise 3. Suppose {xi} is LI. Then show that any subset of {xi} is also LI. Equivalently, if {xi} is LD,
then any superset of {xi} is also LD.

We shall say, whenever x =
∑

i αixi (i ranges over a finite set) that x is a linear combination (LC) of {xi}.

Definition 1.4 (Span). The span of a set of vectors {xi} is the set of all finite linear combinations of {xi}.

Exercise 4. Suppose {xi} is LI and x ∈ V . Then x is a LC of {xi} if and only if {xi} ∪ {x} is LD.

Theorem 1.5. The set of non-zero vectors x1, . . . , xn is linearly dependent if and only if some xk, 2 ≤ k ≤ n, is
a linear combination of the preceding vectors x1, . . . , xk−1. Moreover, the span of x1, . . . , xn is the same as the
span of x1, . . . , xk−1, xk+1, . . . , xn.

Proof. Suppose that k is the smallest index (k > 1 since x1 ̸= 0) such that x1, . . . , xk is LD. Note that such a k
exists because x1, . . . , xn is LD. Exercise 4 yields the first result. To finish, note that any finite linear combi-
nation of x1, . . . , xn can be changed to a linear combination of x1, . . . , xk−1, xk+1, . . . , xn by replacing xk in
the LC by its linear combination in terms of x1, . . . , xk−1. Conversely, any LC of x1, . . . , xk−1, xk+1, . . . , xn
is obviously one of x1, . . . , xn.

1.4 Bases

Definition 1.6. A (linear) basis or coordinate system in a space V is a set X of linearly independent
vectors such that every vector in V is a linear combination of vectors in X. A vector space V is
finite-dimensional if it has a finite basis.

Example 2.

1. Consider the set of vectors e1, . . . , en in Fn where ei is the vector with 1 in the i-th coordinate
and 0 elsewhere. This is called the canonical basis for Fn.

2. The set of polynomials {1, x, x2, . . . , xn−1} is a basis for Pn. The space of polynomials P is not
finite-dimensional.

Remark. Since we take the empty sum is the zero vector, ∅ is a basis for O.

Exercise 5. Suppose V has basis X. Show that every x can be written uniquely as a linear combination
of vectors in X. That is, if x =

∑
i αixi, then each αi is uniquely determined by x.

Theorem 1.7. If V is a finite-dimensional vector space and if {y1, . . . , ym} is an independent set of vec-
tors in V , then unless the yis already form a basis, we can find vectors ym+1, . . . , ym+p such that the set
{y1, . . . , ym, ym+1, . . . , ym+p} is a basis. In other words, every linearly independent set can be extended to a
basis.

3



Proof. Since V is finite dimensional, it admits a basis x1, . . . , xn. If m = 0, we set y0+i = xi and win.
Otherwise, we apply Theorem 1.5 to the linearly dependent set y1, . . . , ym, x1, . . . , xn to get that some xk
is a linear combination of the preceding vectors (it cannot be a yi that we throw out, since {yi} is LI). If the
resulting set is independent, then we set ym+1, · · ·ym+p to be the remaining xis and win. Otherwise, we
apply Theorem 1.5 repeatedly till this is the case. Notice that this will stop in a finite number of steps, since
the number of xis is finite. Also, by the span result of Theorem 1.5, the resulting set is a basis.

Theorem 1.8. Suppose V is a finite-dimensional vector space with basis x1, . . . , xn. Then any linearly indepen-
dent set of vectors in V has at most n vectors.

Proof. This is essentially a refined version of the above proof. Apart from extending an LI set to a basis,
it also bounds its size. Suppose Y = {y1, . . . , ym} is LI. Consider the LD set S = {ym, x1, . . . , xn}. Apply
Theorem 1.5 and throw an xi out from S. Add ym−1 to the front of S; the set is again LD. Another xi is
thrown, add ym−2. Repeat till all elements of Y have been added. At every stage, there must have been an xi
to throw out, since Y is LI. Thus m ≤ n.

Essentially, the previous proof tells us that every additional vector in an LI set must take the spot of some
element of a basis - and thus there can only be so many elements in an LI set.

Corollary. Any two bases of a finite-dimensional vector space have the same number of elements.

Definition 1.9. The dimension of a finite-dimensional vector space V is the number of elements in any
basis of V . We denote this by dimV .

Exercise 6. Suppose V is a finite-dimensional vector space with dimV = n, and X a set of vectors in V .
Then any two of the following imply that X is a basis for V :

1. X is LI.

2. X spans V .

3. X has n elements.

1.5 Isomorphism
In this section, we show the intuitive result that every finite-dimensional vector space over field F is essentially
the same as some Fn. The definition of isomorphism is identical to the definition from Abstract Algebra.

Definition 1.10 (Isomorphic vector spaces). Two vector spaces U and V over the same field F are
isomorphic (denoted U ∼= V) if there exists a bĳection T : U → V such that

T(αu+ βv) = αT(u) + βT(v)

for all u, v ∈ U and α,β ∈ F. We call such a T an isomorphism.

Remark. Any isomorphism T must take 0U to 0V .

Exercise 7. The isomorphism relation ∼ defined by U ∼ V if U and V are isomorphic is an equivalence
relation.
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Exercise 8. Suppose U and V are isomorphic vector spaces over F. Then dimU = dimV . In fact, any
isomorphism T : U → V maps each basis of U to a basis of V .

Which vector spaces are in the equivalence class under ∼ of Fn? Of course, any such space has to have
dimension n. Remarkably, every space with dimension n is isomorphic to Fn.

Theorem 1.11. [Isomorphism theorem] Suppose V is a finite-dimensional vector space over F with dimV = n.
Then V is isomorphic to Fn.

Proof. Let v1, . . . , vn be a basis of V . Verify that the map T : V → Fn defined by T(x = α1v1 + · · ·+αnvn) =
(α1, . . . , αn) is an isomorphism. The same map may be described as follows: Consider the canonical basis
e1, . . . , en of Fn, and let T map each vi to ei. Notice that linearity fixes the value of T on all of V , so T is
uniquely determined. Indeed, it is the isomorphism we seek.

Corollary. Suppose that vector spaces V and W have the same dimension n. Then V ∼= W.

Exercise 9.

1. Show that the real vector spaces Cn and R2n are isomorphic.

2. Suppose that V is a vector space over Zp with dimension n. Find |V |.

1.6 Subspaces

Definition 1.12. A nonempty subset U of a vector space V is a subspace of V if U is a vector space under
the same operations as V . We denote this by U ≤ V .

Exercise 10. Let U ⊆ V be nonempty. Show that U ≤ V if and only if U is closed under addition and
scalar multiplication, that is, for every x, y ∈ U and α,β ∈ F, we have αx+ βy ∈ U.

This latter criterion is typically most convenient in establishing that a given subset is a subspace.
Remark. Note that O ⊆ U for any subspace U of V . We say that two subspaces M,N of V are disjoint if

M ∩N = O.

Exercise 11.

1. Suppose U ≤ V with dimU = dimV . Show that U = V .

2. The following fact is quite useful in establishing isomorphism. Suppose the linear map T : U → V
is injective, and dimU = dimV . Show that T is surjective and hence an isomorphism.

Exercise 12.

1. Consider a set M1, . . . of subspaces of V . Show that M =
⋂

i Mi is a subspace of V .

2. Suppose U and W are subspaces of V . Show that U ∪W is a subspace if and only if U ⊆ W or
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W ⊆ U. Unions are not “well-closed” essentially.

Definition 1.13. Consider a set S ⊆ V . The intersection of all subspaces of V containing S is called the
subspace spanned by S, and is denoted by spanS.

Exercise 13. Consider a set S ⊆ V . Then the subspace spanned by S is precisely the span of S.

The above exercise establishes the fact that the span of a set of vectors is a subspace, and that it is actually
the minimal (in terms of set inclusion) subspace containing the set.

Exercise 14. If H and K are two subspaces and M the subspace spanned by H ∪K, then M is the same
as the set of all vectors of the form x+ y, where x ∈ H and y ∈ K.

Prompted by the above exercise, we denote M = H +K. This is called the sum of spaces H and K. We
shall say that a subspace K of a vector space V is a complement of a subspace H of V if V = H + K and
H ∩K = O.

Theorem 1.14. A subspace U of an n-dimensional vector space V is a vector space of dimension at most n.

Proof. If U = O, then dimU = 0, and we are done. Otherwise, ∃ nonzero u1 ∈ U. Let U1 be the subspace
spanned by u1. If U1 = U, we are done. Otherwise, there is u2 ∈ U \U1. Let U2 be the subspace spanned
by u1, u2. If U2 = U, we are done. Otherwise, there is u3 ∈ U \ U2. Continuing in this fashion, we get a
sequence of subspaces U1 ⊂ U2 ⊂ . . . of U. Since V is finite-dimensional, this sequence must terminate,
since the set u1, . . . is LI, say at Uk. Then Uk = U, and so dimU = k ≤ n.

A similar argument shows the following:

Exercise 15 (Basis extension for subspaces). Given any m-dimensional subspace U of n-dimensional
vector space V and a basis x1, . . . , xm of U, we can find a basis x1, . . . , xm, xm+1, . . . , xn of V .

The above exercise also implies Theorem 1.7.

Exercise 16.

1. Show that every subspace of a vector space V has a complement.

2. Show that every non-trivial subspace of a vector space V (i.e. one that is not O or V) does not
have a unique complement.

3. If U is a m-dimensional subspace of n-dimensional vector space V , then show that every com-
plement of U in V has dimension n−m.

Exercise 17. An easy consequence of the basis extension theorem is the following inclusion-exclusion
style result:

dim(U+W) = dimU+ dimW − dim(U ∩W).

(Hint: Extend a basis of U ∩W to bases of U and W.) The general theorem is also true. Use the above
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hint and the combinatorial inclusion-exclusion principle to show that

dim(U1 + · · ·+Um) =

m∑
i=1

dimUi −
∑
i<j

dim(Ui ∩Uj) + · · ·+ (−1)m−1 dim(U1 ∩ · · · ∩Um).

1.7 Dual Spaces

Definition 1.15 (Linear functional). A linear functional on a vector space V over field F is a function
y : V → F such that y(αx + βx ′) = αy(x) + βy(x ′) for all x, x ′ ∈ V and α,β ∈ F. The set of all linear
functionals on V is denoted by V∗.

As with isomorphisms, the values of a linear functional on a basis of V determine its values on all of V .
Also, every linear functional y sends 0V to 0F.

Example 3.

1. For x = (x1, . . . , xn) ∈ Cn, the functions y(x) = x1 or y(x) = x1 + x2 or more generally
y(x) =

∑
i αixi are linear functionals on Cn.

2. The zero functional, y(x) = 0 for all x ∈ V , is a linear functional on V .

Definition 1.16 (Dual space). The dual space of a vector space V over field F is the vector space V∗ over
F of all linear functionals on V . The operation of addition and scalar multiplication on V∗ are defined
pointwise.

Exercise 18. Show that the dual space of a vector space V is a vector space.

Definition 1.17 (Bracket notation). The notation [x, y] is a substitute for the ordinary function symbol
y(x).

The notation [x, y] is a symbolic way of writing down the recipe for actual operations performed; for
example, if y(x) = x2, it corresponds to the sentence [take a number, and square it].

The defining property of a linear functional then becomes

[αx+ βx ′, y] = α[x, y] + β[x ′, y],

and the definition of the linear operations for linear functionals becomes

[x, αy+ βy ′] = α[x, y] + β[x, y ′].

The two relations together say that [x, y] is a bilinear form of x ∈ V and y ∈ V∗.

Exercise 19. Fix a basis x1, . . . , xn of V . Show that every function y of the form

y(x =
∑
i

αixi) =
∑
i

αiβi

is a linear functional. Conversely, show that every linear functional on V is of this form for some βi.
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The previous exercise yields the useful Riesz representation theorem, which we shall state here though
the notion of a matrix and matrix multiplication has not been defined yet, since it is a useful way to think
about the dual space.

Theorem 1.18 (Riesz). Let V be a finite-dimensional vector space with some basis X = {x1, . . . , xn}. Associate
each y ∈ V∗ with the vector β =

∑
i βixi (represented [β1, . . . , βn]

T ) where y(xi) = βi for each i. This corre-
spondence is an isomorphism between V∗ and V , and further for each x =

∑
i αixi (represented [α1, . . . , αn]

T )
we have

[x, y] = xTβ.

Exercise 20.

1. Show that the value of [xi, y] for a basis x1, . . . , xn of V determines y uniquely.

2. Show that the value of [x, yi] for a basis y1, . . . , yn of V∗ determines x uniquely.

Exercise 21. Prove that if y and z are linear functionals on V such that

[x, z] = 0 =⇒ [x, y] = 0,

then there exists scalar α such that y = αz.

It is clear that given a basis x1, . . . , xn of V and a set of scalars α1, . . . , αn, there is one and only one
functional y satisfying [xi, y] = αi for each i. Consider the functionals y1, . . . , yn defined by [xi, yj] = δij,
where

δij =

{
1 i = j

0 i ̸= j

is the Kronecker delta.

Exercise 22. Show that y1, . . . , yn is a basis of V∗.

Definition 1.19 (Dual basis). Fix a basis X = {x1, . . . , xn} of V . The basis X∗ = {y1, . . . , yn} of V∗

defined by [xi, yj] = δij is called the dual basis of x1, . . . , xn.

The reason for dual is due to the following theorem:

Theorem 1.20. Let V be a finite-dimensional vector space. The dual space V∗ is isomorphic to V .

Proof. V and V∗ have the same dimension by the existence of a dual basis. The result then follows from
Theorem 1.11.

If we look at [x, y] as a function of x for fixed y = y0, we see a linear functional acting on V . If, however,
we fix x = x0, we then see a linear functional on V∗, that is, an element of V∗∗. By this method we have
exhibited some linear functionals on V∗; have we exhibited them all? For the finite-dimensional case, the
answer is, remarkably, yes.
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Theorem 1.21 (Double dual). Let V be a finite-dimensional vector space. Corresponding to each linear
functional z0 on V∗ there is a vector x0 in V such that

z0(y) = [x0, y] = y(x0)

for every y ∈ V∗. The correspondence z0 ↔ x0 between V∗∗ and V is an isomorphism, called the natural
isomorphism.

Proof. Consider the map T from V to V∗∗ defined by T(x) = [x, ·] viewed as an element of V∗∗. T is linear,
since T(αx+ βx ′) = α[x, ·] + β[x ′, ·] = αT(x) + βT(x ′). T is injective, since T(x) = 0 implies [x, y] = 0 for all
y, and so x = 0. T(V) is an n-dimensional subspace of V∗∗, since for a basis x1, . . . , xn of V , T(x1), . . . , T(xn)
is one of T(V):

∑
i αiT(xi) = 0 =⇒ T(

∑
i αixi) = 0 =⇒ ∑

i αixi = 0 =⇒ αi = 0 for all i. So T(V) = V∗∗,
since V∗∗ is n-dimensional. Thus T is surjective (establishing the existence of an x0 for every z0), and hence,
also an isomorphism.

In view of the above theorem, it is frequently convenient to be mildly sloppy and identify V∗∗ with V ,
and we shall say that the element z0 of V∗∗ is the same as the element x0 of V whenever z0(y) = [x0, y] for
each y.

Exercise 23. Show that the dual basis X∗∗ ∈ V∗∗ identifies with X ∈ V .

1.8 Annihilators

Definition 1.22. The annihilator S0 of a subset S of a vector space V is the set of vectors y ∈ V∗ such
that [x, y] = 0 for all x ∈ S.

Notice that the annihilator of a subset is a subspace of the dual space. We have the following nice result:

Theorem 1.23. If U is an m-dimensional subspace of V , then U0 is an (n−m)-dimensional subspace of V∗.

Proof. Suppose that a basis for U is u1, . . . , um and that extended to V is u1, . . . , un. The esential constraint
on a vector y =

∑
i αiu

∗
i in U0 is that y(ui) = 0 for i = 1, . . . ,m. y(um+1) . . . y(un) can be chosen arbitrarily.

We leave it to the reader to verify that ym+1, . . . , yn indeed form a basis for U0.

Exercise 24. Suppose that U ⊆ W are subspaces of vector space V . Show that dimU = dimW if and
only if U = W.

Theorem 1.24 (Involution). If U is a subspace of V , then U00 = U.

Proof. U00 is the set of vectors z ∈ V∗∗ (so x ∈ V) such that [x, y] = 0 for all y ∈ U0. For each x ∈ U, [x, y] = 0
for all y ∈ U0 so U ⊆ U00 ⊆ V . But dimU00 = n− (n−m) = m = dimU, so U = U00.

Exercise 25.

1. Let y ̸= 0 ∈ V∗. Prove that the set of vectors x ∈ V with [x, y] = 0 is an (n − 1) dimensional
subspace of V .
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2. Let y(x) = ζ1 + ζ2 + ζ3 whenever x = (ζ1, ζ2, ζ3) is a vector in C3. Find a basis for the subspace
of C3 consisting of all vectors x such that y(x) = 0.

Exercise 26 (System of linear equations).

1. Consider a system of m equations (with right-hand side 0) in n variables represented as a set of
m linear functionals over Cn∗: that is, the system of linear equations is rephrased as [x, yi] = 0
for i = 1, . . . ,m. Prove that for m < n, the kernel of this system (the set of solutions x) contains
a nonzero vector. Find the dimension of the kernel.

2. Suppose now that the equations are of the form [x, yi] = αi. Let m < n again. What are the
conditions on the αi’s for the system to have a solution?

Exercise 27. Let M, N be subspaces of a finite-dimensional vector space V . Prove that (M + N)0 =
M0∩N0 and (M∩N)0 = M0+N0. The involution property of the annihilator operation can sometimes
come in handy.

1.9 Direct Sums
We shall study several important general methods of making new vector spaces out of old ones. The sum
construction we have already seen to make new subspaces out of existing ones.

Definition 1.25 (Direct Sum). if U and V are vector spaces over the same field F, their direct sum
W = U ⊕ V whose elements are all the ordered pairs ⟨u, v⟩ with u ∈ U and v ∈ V . The operations of
addition and scalar multiplication are defined by

⟨u1, v1⟩+ ⟨u2, v2⟩ = ⟨u1 + u2, v1 + v2⟩
α⟨u, v⟩ = ⟨αu,αv⟩

Exercise 28. Prove that the direct sum of two vector spaces is a vector space.

Exercise 29. Prove that the direct sum of two finite-dimensional vector spaces is finite-dimensional and
that dim(U⊕ V) = dimU+ dimV .

The set of vectors ⟨x, 0⟩ is a subspace of U ⊕ V isomorphic to U. It is convenient to identify U with this
subspace. Similarly, we identify V with the subspace ⟨0, v⟩ of U⊕ V . With this identification, we can think
of U and V as subspaces of U⊕ V .

The distinction between ⟨u, v⟩ and u+ v with U, V disjoint is more pedantic than conceptual - it is much
the same distinction as ((1, 2), 3) and (1, 2, 3) - and we shall usually ignore it.

The question then arises: what is the relation between U and V when we consider these spaces as
subspaces of the big space W?

Theorem 1.26. if U and V are subspaces of a vector space W, then the following three conditions are equivalent.

1. W = U⊕ V .

2. U ∩ V = O and U+ V = W (i.e. U and V are complements of each other).
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3. Every vector w ∈ W can be written in one and only one way as w = u+ v with u ∈ U and v ∈ V .

Proof. The proofs (1) =⇒ (2) =⇒ (3) are left as exercises. The implication (3) =⇒ (1) is almost by
definition. We have that every vector z ∈ W can be written z = ⟨u, 0⟩ + ⟨0, v⟩ = ⟨u, v⟩ for some u ∈ U and
v ∈ V . This correspondence is injective; thus W ⊆ U ⊕ V . but every vector in U ⊕ V can be written in the
form ⟨u, v⟩ = u+ v ∈ W so U⊕ V ⊆ W.

The condition (2) provides an easy-to-check criterion for determining if W = U⊕V . Picking bases for U
and V , the condition (2) is equivalent to the statement that the concatenation of the two bases is a basis for
W (that is, the concatenation must be independent - the intersection condition - and also span W - the sum
condition).

If two subspaces U and V of W are disjoint and they span W, it is usual to say that W is the internal
direct sum of U and V .

Exercise 30. If W is n-dimensional and U is an m-dimensional subspace of W, prove that there exists
an (n−m)-dimensional subspace V of W such that W = U⊕ V .

We next characterize the linear functionals on a direct sum. For simplicity (but without loss of generality),
we assume that M and N are disjoint subspaces of V .

Exercise 31. Suppose that M and N are subspaces of V , and that V = M ⊕ N. Show that M∗ is
isomorphic to N0 and N∗ to M0. Show also that V∗ = M0 ⊕N0.

To conclude, note that one can generalize each result proved here to the direct sum of any finite number
of vector spaces; there is nothing special about the number two.

Exercise 32. Show that the ⊕ operator is commutative and associative upto isomorphism.

1.10 Quotient Spaces
If M is a subspace of vector space V , there are usually many complements of M. There is no natural way
of choosing one from among the wealth of complements. There is, however, a natural construction that
associates with M and V a new vector space that, for all practical purposes, plays the role of a complement
of M. The theoretical advantage is that it does not depend upon a basis, or for that matter, on choosing
anything at all.

Definition 1.27 (coset). We define the coset ofM inV containing x to be the set x+M = {x+m : m ∈ M}.

We do not distinguish cosets by their representatives x.

Exercise 33.

1. The cosets of M in V form a partition of V .

2. We define the sum of two cosets like subspace addition: we write H + K for the set of all sums
u+ v with u ∈ H and v ∈ K. Prove that H+ K is a coset of M in V .

3. We define the scalar multiplication operator in the natural way: αH = {αh : h ∈ H}. Prove that
αH is also a coset of M in V .

4. Verify that the set of cosets forms a vector space over F with the operations as defined above. (For
the reader familiar with group theory, the normality of M in V is trivial from the commutativity

11



in the vector space, so the set of cosets is always a vector space).

The vector space of the set of cosets is called the quotient space V/M.

Theorem 1.28. If M and N are complements in V , then the correspondence that assigns to each vector y ∈ N
the coset y+M is an isomorphism between N and V/M.

Proof. The map is clearly linear. It is injective because M ∩N = O. It is surjective because M+N = V .

Corollary. If M is a subspace of finite-dimensional vector space V , then V/M is finite-dimensional and
dimV/M = dimV − dimM.

Exercise 34. Let M be a subspace of V .

1. Assign to each y ∈ (V/M)∗ the functional z ∈ V∗ defined by z(x) = y(x+M) for all x ∈ V . Show
that every such z is an element of M0. Moreover, prove that T is an isomorphism (V/M)∗ → M0.
(the key point here is that this particular map is an isomorphism; the isomorphism between the
spaces is trivial by dimensionality).

2. Show that V∗ ∼= M∗ ⊕ M0. Corresponding to every coset y + M0 in V∗/M0 there is a linear
functional z on V such that z(x) = y(x) for all x ∈ M. Show that the map T : y + M0 7→ z is
well-defined. That is, for every y, y ′ ∈ V∗, if y +M0 = y ′ +M0, then y = y ′ on M. Show also
that T is an isomorphism V∗/M0 → M∗.

1.11 Bilinear Forms
Consider a direct sum W = U⊕ V . It will be convenient to use the ⟨x, y⟩ representation for elements of W
here. We write w(⟨x, y⟩) = w(x, y) for a function w on W. The linear functionals w are not of much more
interest; we have already described them in Exercise 31. We turn our attention to other functions on W; in
particular, the bilinear forms.

Definition 1.29. A scalar-valued function w on W is called a bilinear form (or bilinear functional) if it
is linear in each variable separately: For all x, x1, x2 ∈ U and y, y1, y2 ∈ V and all α,β ∈ F, we have

w(αx1 + βx ′, y) = αw(x, y) + βw(x ′, y)

w(x, αy+ βy ′) = αw(x, y) + βw(x, y ′)

Remark. Note that every bilinear form is 0F on each ⟨x, 0⟩ and ⟨0, y⟩.
We have already seen one such bilinear functional: suppose that W = V ⊕V∗. Set w(x, y) = [x, y]. Then

w is a bilinear form on W.

Exercise 35. Let W = U ⊕ V and let u ∈ U∗, v ∈ V∗. Show that the function w(x, y) = u(x)v(y) is a
bilinear form on W. (note however, that the function w(x, y) = u(x) + v(y) is not a bilinear form on
W).

Indeed, supposing that u∗
1, . . . , u

∗
m is a basis for U∗ and v∗1, . . . , v

∗
n is a basis for V∗, then

w =
∑
i,j

αiju
∗
i (x)v

∗
j (y)

is a bilinear form on W. It is reasonable to expect that every bilinear form on W can be written in this form,
much like the case for linear functionals.
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Exercise 36. Define the addition and scalar multiplication operations on bilinear forms to be pointwise.
Under these operations, the set of bilinear forms W(2) on W is a vector space over F.

We define the dual basis for the space of bilinear forms just like we did for the dual space: letting
X = {x1, . . . , xm} be a basis for U and Y = {y1, . . . , yn} be a basis for V , define the set of bilinear forms wij by

wij(xk, yl) = δikδjl

with extension to all of W by bilinearity.

Exercise 37. Show that the set {wij} is a basis for W(2). Hence conclude that dimW(2) = dimU · dimV .

Exercise 38. Given a bilinear form w, we define the transpose wt of w by wt(x, y) = w(y, x). w is said
to be symmetric if w = wt and skew-symmetric if w = −wt. Show that every bilinear form can be
written as the sum of a symmetric and a skew-symmetric bilinear form.

Exercise 39. Suppose that w is a bilinear form on W = V ⊕V . A quadratic form on V is a function q on
V defined by q(x) = w(x, x).

1. If w is symmetric and 4 is invertible in the underlying field, show that q determines w uniquely.

2. If w is skew-symmetric, show that q is the zero function.

Finally, a Riesz-like (see Theorem 1.18) result for bilinear forms:

Exercise 40. Let w be a linear form on V ⊕W. Fix bases X = {x1, . . . , xn} of V and Y = {y1, . . . , yn} of
W, and consider matrix A with entries aij = w(xi, yj). Show that for each x, y (represented as column
vectors in bases X, Y respectively) we have

w(x, y) = xTAy.

Further, show that w is symmetric iff A is symmetric, and similarly for skew-symmetric.

1.12 Multilinear Forms
We foray briefly into the world of multilinear forms because of their importance in the study of determinants
later on.

Definition 1.30. Suppose V1, . . . , Vk are vector spaces over the same field F. A k-linear form is a scalar-
valued function w from V1 ⊕ · · · ⊕Vk to F that is linear in each variable for any fixed value of the other
variables.

That is, for each i, scalars α1, α2 ∈ F, vectors yj ∈ Vj for j ̸= i and x1, x2 ∈ Vi we have

w(y1, . . . , yi−1, α1x1+α2x2, yi+1, . . . , yk) = α1w(. . . , yi−1, x1, yi+1, . . . )+α2w(. . . , yi−1, x2, yi+1, . . . ).

The linear functionals are precisely the 1-linear forms. As with these, pointwise addition and multipli-
cation make the set of k-linear forms into a vector space over F.
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Exercise 41. Let W(k) denote the vector space of all k-linear forms on W = V1 ⊕ · · · ⊕ Vk. Show that
dimW(k) =

∏k
i=1 dimVi.

Example 4. Consider W = R2 ⊕ R3. Let ı̂, ȷ̂ be the standard basis for R2 and e1, e2, e3 be the standard
basis for R3. Consider x = x1 ı̂+ x2 ȷ̂ and y = y1e1 + y2e2 + y3e3.

• If w is a linear functional on W, then

w(x, y) = x1w(̂ı, 0) + x2w(̂ȷ, 0) + y1w(0, e1) + y2w(0, e2) + y3w(0, e3).

• If w is instead a bilinear functional on W, then

w(x, y) = x1y1w(̂ı, e1)+x1y2w(̂ı, e2)+x1y3w(̂ı, e3)+x2y1w(̂ȷ, e1)+x2y2w(̂ȷ, e2)+x2y3w(̂ȷ, e3).

Let us denote the k-fold direct sum V ⊕ . . . V by V⊕k. A k-linear form on V⊕k is symmetric if for each
πinSk (the set of permutations of [k] aka the symmetric group of order k), one has πw = w, where

πw(x1, . . . , xk) = w(xπ(1), . . . , xπ(k)).

A k-linear form is skew-symmetric if πw = sgn(π)w for each π ∈ Sk (sgn(π) is the sign of the permutation
π).

Exercise 42. Show that w is skew-symmetric iff πw = −w for every odd permutation w.

Finally, a form w is alternating if w(x1, . . . , xk) is 0 whenever two of the xi’s are equal.

Theorem 1.31. Every alternating multilinear form is skew-symmetric.

Proof. Exercise. Use 0 = w(x1 + x2, x1 + x2, . . . , xk).

Note that the converse is not true in full generality.

Exercise 43.

1. Suppose w is a skew-symmetric multilinear form. Suppose that 2 is invertible in the underlying
field. Show that w is alternating.

2. Consider the field F = Z2 and the vector space V = F2. In this field, w = −w so symmetry is
identical to skew-symmetry. Show that there exists a symmetric multilinear form on V that is not
alternating.

It turns out that alternating forms have a lot to do with linear dependence.

Exercise 44. Let x1, . . . , xk be linearly dependent, and let w be an alternating multilinear form on V⊕k.
Then w(x1, . . . , xk) = 0. Hint: Use Theorem 1.5.

Theorem 1.32. Let dimV = n, and suppose that w ̸= 0 is an alternating multilinear form on V⊕n. Then for
every basis X = {x1, . . . , xn} of V , w(x1, . . . , xn) ̸= 0.
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Proof. Consider w(y1, . . . , yn) for general yi ∈ V . Suppose that for each i, yi =
∑

j αijxj. Then expanding
by multilinearity and using alternation,

w(y1, . . . , yn) =
∑

j1,...,jn∈[n]n

(α1j1 . . . αnjn)w(xj1 , . . . , xjn)

=
∑
π∈Sn

(
n∏

i=1

αiπ(i)

)
(πw)(x1, . . . , xn)

=

( ∑
π∈Sn

sgn(π)

n∏
i=1

αiπ(i)

)
w(x1, . . . , xn).

Thus w(x1, . . . , xn) = 0 ⇐⇒ w = 0 as needed.

Using the same proof idea yields the following useful result:

Exercise 45. Any two alternatingn-linear forms on a vector space of dimensionn are linearly dependent,
i.e. scalar multiples of each other.

Exercise 46. What is the dimension of the space of all symmetric k-linear forms? What about the skew-
symmetric forms? The alternating forms? For simplicity, you may assume the vector space involved
is V⊕n, and that k ≤ n. (Hint: Pick a basis for V , and then expand out w(y1, . . . , yk) for general
y1, . . . , yk ∈ V . Which w(. . . ) values do you need, and which ones are then determined?)

To finish, we make one final point about the connections of multilinear forms to algebra: we have seen
that 1-linear forms - the functionals - are dual to vectors, and similarly that 2-linear forms are dual to
matrices. The general object here is a tensor, and makes up the study of tensor algebra.

1.13 Tensor Products - Rewrite!
We look at another way to put two vector spaces together to create a third. Consider the following motivating
example. Let U be the set of polynomials in variable s and V that in t. Let W be the set of two-variable
polynomials in variables s, t. W is not a sum of U and W, of course, but in a sense it is related to the vectors
in U and V ; for example, the polynomial product of u ∈ U and v ∈ V defines an element z(s, t) = u(s)v(t)
of W. And indeed, the cartesian product of the bases of U and V - the set {si : i ≥ 0}× {tj : j ≥ 0} - is a basis
for W. We shall now formalize this construction.

Definition 1.33. The tensor product U ⊗ V of two finite-dimensional vector spaces U and V (over the
same field F) is the dual of the vector space of bilinear forms on U⊕ V .

For each x, y ∈ U ⊕ V , we also define the element z := x ⊗ y in U ⊗ V by z(w) = w(x, y) for all
w ∈ (U⊕ V)(2). We call z the tensor product of x and y.

Notice that we get the product rule for dimensions: dim(U ⊗ V) = dimU · dimV for free from the
definition.

Theorem 1.34. If X = {x1, . . . , xm} is a basis for U and Y = {y1, . . . , yn} is a basis for V , then the set
{zij = xi ⊗ yj} is a basis for U⊗ V .

Proof. Let {wij} be the (basis of) bilinear forms defined by wij(xk, yl) = δikδjl. Notice that zkl(wij) =
δ(i,j)=(k,l); since {wij} is a basis, {zij} is a (the dual) basis for U⊗ V .
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Exercise 47. LetU,V,W be finite-dimensional vector spaces over F. Prove that (U⊗V)⊗W ∼= U⊗(V⊗W)
and U⊗ V ∼= V ⊗U. Show that

U⊗ (V ⊕W) = (U⊗ V)⊕ (U⊗W).
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Chapter 2

Transformations

2.1 Linear Transformations
We come now to the objects that really make vector spaces interesting.

Definition 2.1. A linear transformation or operator A on a vector space V is a correspondence that
assigns to each vector x ∈ V a vector Ax in V in such a way that

A(αx+ βy) = αAx+ βAy

for every choice of scalars α and β and vectors x and y in V .

Example 5.

1. The zero transformation 0 : x 7→ 0 and the identity 1 : x 7→ x.

2. The projection: Let x0 be a fixed vector in V , and y0 any functional in V . Then the map
x 7→ y0(x)x0 is a linear transformation. Readers familiar with matrices will recognize the matrix
x0y

T
0 associated to this transformation.

It is clear that the pointwise sum and scalar multiplication of linear transformations yield linear trans-
formations. Thus the space of linear transformations also forms a vector space, which we denote by L(V)
or L(V,V).

In particular, for arbitrary set {x1, . . . , xn} of vectors and linear functionals {y1, . . . , yn} the following
function is a linear transformation:

x 7→ n∑
i=1

yi(x)xi.

Exercise 48. Suppose that X = {x1, . . . , xn} is a basis for V . Show that every linear transformation
A ∈ L(V,V) can be written uniquely as

Ax =

n∑
i=1

yi(x)xi

for some set {y1, . . . , yn} of linear functionals. Conclude that dimL(V,V) = (dimV)2.
Again, for those familiar with matrices, one can think of each functional (in vector form) as a row

of the matrix A.

A few more examples of linear transformations:
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Example 6.

1. Let V be the space of all polynomials in x of degree at most n. Then the derivative operator D is a
linear transformation on V . Wrt the basis set {1, x, . . . , xn}, find the associated linear functionals
as defined in the above exercise. Similarly the function x(t) 7→ x(t+ 1) − x(t) as well.

2. Let m be a polynomial in t. Then the map p(t) 7→ m(t)Dp(t) is a linear transformation on P.

3. Let V = C; then the map z 7→Ψz is a linear transformation on V .

4. Let V be the space of k-linear forms on a vector space; then the map Aw =
∑

π∈Sk
sgn(π)πw is a

linear transformation on V . This is the alternating operator.

A more general definition of a linear transformation allows for the domain and codomain to be different
vector spaces.

Definition 2.2. Let V and W be vector spaces. A linear transformation A from V to W is a function
V → W such that

A(αx+ βy) = αAx+ βAy

for every choice of scalars α and β and vectors x and y in V .

Again, the space of linear transformations from V to W forms a vector space denoted L(V,W).

Example 7.

1. Every linear functional on V is a linear transformation V → F.

2. The projection operator ⟨x, t⟩ 7→ x is a linear transformation V ⊕W → V .

3. Let N ≤ V be a subspace. The map x 7→ x+N is a linear transformation V → V/N.

The key thing about linear transformations are that they are functions - and so can be composed (if
compatible).

Definition 2.3 (Product). Let A : V → W and B : U → V be linear transformations. Then the product
AB : U → W is defined by

(AB)u = A(Bu).

Exercise 49. Show that the product of two linear transformation is also a linear transformation.

Notice that the product of linear transformations is not commutative in general. However, it is associative.
Given A ∈ L(V,V), we define the iterated multiplications in the natural way: A0 := 1, An+1 = AnA.

Note that Am and An commute for all m and n. Given polynomial p(t), we define p(A) to be the linear
transformation p(A) =

∑n
i=0 aiA

i ∈ L(V,V).
One disconcerting thing that we shall get out of the way now:

Definition 2.4 (Divisors of Zero). Suppose A ̸= 0 ∈ L(V,W), B ̸= 0 ∈ L(U,V) are transformations
satisfying AB = 0. Then A is a left divisor of zero and B is a right divisor of zero.

For example, denoting the iterated differentiation operator on Pn by Dk, we have DkDn−k = 0 for
1 < k < n.
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2.2 Inverses
Suppose that A ∈ L(V,V) is a bĳection. We then say that A is invertible and denote its inverse by the inverse
function A−1.

Exercise 50. Show that A−1 is also a linear transformation V → V .

Theorem 2.5 (Uniqueness of the inverse). If A, B and C are linear transformations on V such that AB = 1
and CA = 1, then A is invertible and B = C = A−1.

Proof. We have C = C1 = CAB = 1B = B. A more illuminating proof follows. If Ax1 = Ax2, then
CAx1 = CAx2, so x1 = x2. Thus A is injective. Similarly, suppose that y ∈ V . Then y = A(By), so A
is surjective. Thus A is invertible. Multiply by A−1 on the left to get B = A−1 and on the right to get
C = A−1.

Exercise 51. If A is invertible, show that A−1 is invertible and that (A−1)−1 = A.

Exercise 52. Suppose A and B are linear transformations on the same vector space V such that AB = 1.
We say A is a left inverse for B and B is a right inverse for A. Suppose that A has a unique right inverse
B. Show that A is invertible and B = A−1. (Hint: A(BA− 1) = 0).

A more remarkable result holds for linear transformations over finite-dimensional vector spaces: one of
injectivity or surjectivity is enough to guarantee invertibility:

Theorem 2.6 (Invertible linear transformations). Let A be a linear transformation on a finite-dimensional
vector space V . Then the following are equivalent:

1. A is invertible.

2. A is injective. Equivalently, Ax = 0 implies x = 0.

3. A is surjective. For every y ∈ V,∃x ∈ V such that Ax = y.

Proof. (1) =⇒ (2), (3) are trivial. We establish the reverse implications.
(2) =⇒ (1): Suppose A is injective. Let X = {x1, . . . , xn} be a basis for V . By injectivity and linearity, it

is easy to verify that AX = {Ax1, . . . , Axn} must be a basis for V . But the range of A is precisely the span of
AX and so is V . Thus A is surjective - and hence invertible.

(3) =⇒ (1): Suppose A is surjective. Let Y = {y1, . . . , yn} be a basis for V . Choose xi such that Axi = yi

for each i. Then X = {xi} is a basis for V , because
∑

i αixi = 0 =⇒ ∑
i αiyi = 0. So every x can be written∑

i αixi and so Ax = 0 ⇐⇒ ∑
i αiyi = 0 ⇐⇒ αi = 0 for all i i.e. x = 0. Thus A is injective - and hence

invertible.

Exercise 53. Suppose V is finite-dimensional. Then AB = 1 implies that both A and B are invertible
(and inverses of each other).

Exercise 54. If A and B are invertible, then show that AB is invertible and (AB)−1 = B−1A−1. Let
α ̸= 0, then prove that αA is invertible and (αA)−1 = α−1A−1.

The above exercises establish that An is invertible for every invertible A and integer n.
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Exercise 55. Show that
A,B invertible ⇐⇒ AB,BA invertible.

2.3 Matrices

Definition 2.7 (Matrix). An m × n matrix A on a set S is a function A : [m] × [n] → S. A matrix is
typically denoted by a rectangular array:

A =

a11 . . . a1n

...
. . .

...
am1 . . . amn


where we use Aij to denote the value of A at (i, j). A matrix is often also denoted by the numbers Aij

written as a doubly-indexed set - for example, {Aij}i,j where the bounds of i (rows) and j (columns)
are clear from context.

A matrix is said to be square if m = n.

Under pointwise addition and scalar mulitplication, the set of all m×n matrices on field F forms a vector
space, denoted Mm,n(F) or Fm×n.

The matrix is a most useful tool for finite-dimensional vector spaces.

Definition 2.8. Let V be an n-dimensional vector space and X be a basis for V . Let A be a linear
transformation on V . Since every vector is a linear combination of the xis, we have in particular

Axj =
∑
i

αijxi

for each j = 1, . . . , n. The set of scalars {αij}i,j define the matrix of transformation A wrt basis X and is
denoted [A;X] or [A]XX or [A]X or simply [A].

Remark. Note that the appearance of the square array associated with [A] varies with the ordering of X
- the matrix is thus ideally associated with a transformation, a basis, and an ordering of that basis.

Remark. Notice the unusual indexing:

Axj =
∑
i

αijxi

instead of the more "natural"
Axi =

∑
j

αijxj.

This stems from the fact that vectors are represented as column vectors - that is, matrices with a single
column. Following this convention, the vector Axj is more ideally represented as a column of [A], and not
a row (this is not just a choice of aesthetics; matrix multiplication is also simplified by this convention). The
jth column being Axj necessitates the "unusual" indexing (the first index of the matrix is always the row,
and the second the column).

If transformations A, B have matrices [A], [B], what about [αA+βB]? We want the matrix to continue to
satisfy its defining point of correspondence to the transformation:

Axj =
∑
i

[A]ijxi.
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Exercise 56. Show that [αA+βB] = α[A]+β[B]. This equation is nice thanks to our definition of matrix
addition and scalar multiplication.

What about [AB]?

Exercise 57. We would like to define a multiplication operation for matrices that has the pleasing
property

[AB] = [A][B].

What is the notion of matrix multiplication that we must use?

The following definition of matrix multiplication looks strange at first, but is naturally implied by the
above exercise.

Definition 2.9 (Matrix multiplication). Let A be an m × n matrix and B an n × p matrix. Then the
product AB is the m× p matrix defined by

(AB)ij =
∑
k

AikBkj.

Exercise 58 (The reason for the strange indexing). Suppose that we defined [A] instead by the more
natural choice,

Axi =
∑
j

[A]ijxj.

Show that the product of matrices AB would then be defined by

[AB]ij =
∑
k

[B]ik[A]kj

instead - which "looks" more like a reasonable definition for [B][A] that [A][B]! The difficulty rose
precisely because B is applied first in the transformation AB - the inverted indices serve exactly to
counter this when doing matrix mulitplication.

Definition 2.10. We associate to every vector x = (ζ1, . . . , ζn) ∈ Fn the column vector

[x] =

ζ1...
ζn

 ∈ Fn×1.

Let V be a finite-dimensional vector space, and fix basis X for V . As in the proof of Theorem 1.11, we
associate with each x ∈ V the solumn vector [x]X ∈ Fn×1 defined by

x =
∑
i

ζixi ⇐⇒ [x]X =

ζ1...
ζn

 .

We call [x]X the coordinate vector of x wrt X.
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Exercise 59 (Multiplying matrices with vectors). Fix a finite-dimensional vector space V , a basis X and
a transformation A. Show that for each x ∈ V ,

[Ax]X = [A]X[x]X.

At first sight, this seems a pleasant coincidence. However, one can make it more natural: Treat each
vector x as being the linear transformation α 7→ αx from F to V . One then sees that Ax : F → V is the
composition of x : F → V and A : V → V , since for each α ∈ F

(Ax)(α) = αAx = A(αx) = A(x(α)).

Thus [Ax]X = [A]X[x]X is just the usual equation one expects of a composition of transformations. (This
is a bit of a stretch, but it is a nice way to think about it).

Note that we have not defined the matrix of a linear transformation from V to a different space W, but
we have used it in the above exercise; we shall get to it shortly. Note also that [x]X is the matrix of the linear
transformation x when the basis of F used is {1}.

Exercise 60. Show that matrix multiplication is associative and distributive over addition.

We next prove a result that establishes much the same thing as Theorem 1.11 did.

Theorem 2.11 (Isomorphism between linear transformations and matrices). Fix finite-dimensional vec-
tor space V and basis X. Let n = dimV . Then the map A 7→ [A]X is an isomorphism between vector spaces
L(V) and Fn×n.

Proof. It is clear that the map is linear. As in the case of linear functionals, it is clear that the value of A on X

determines A. Since the matrix [A]X precisely specifies this information, the map is injective. Further, from
each matrix M, one can read off a linear transformation A by defining for each x =

∑
i ζixi

Ax =
∑
j

ζj

(∑
i

Mijxi

)
.

This is clearly linear, and so the map is surjective. Thus the map is an isomorphism.

Exercise 61. Extend the notion of the matrix associated to a linear transformation to the case where the
domain and codomain are different vector spaces. Verify that the matrices of addition and composition
of linear transformations still have the same symbolic form as before.

Thus in the general case (transformations V → W), not every matrix representation is square, the matrix
products AB and BA may have altogether different dimensions, and finally that matrices A and B many not
even be multipliable.

Exercise 62. Suppose that A and B are multipliable matrices. Partition A into four rectangular blocks
like so:

A =

[
A11 A12

A21 A22

]
where Aij are now matrices. Partition B similarly so that the number of columns in the top left part of
A is the same as the number of rows of the top left part of B. B now looks like

B =

[
B11 B12

B21 B22

]
.
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Show that
AB =

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

Next, use subspaces and complements to express the above result in terms of linear transformations.
Finally, can you generalize the result and interpretation to a larger number of blocks?

The form of writing a matrix in terms of matrices of linear transformations on subspaces is extremely
useful at times and is called a block form of the matrix. Matrices written in terms of blocks are typically
called block matrices.

2.4 Invariance and Projections

Definition 2.12 (Invariance). Let A be a linear transformation on V and let M ≤ V be a subspace. We
say that M is invariant under V if

AM = {Ax : x ∈ M} ≤ M,

that is, for every x ∈ M, Ax ∈ M.

Exercise 63. Suppose M is invariant under A. Pick a basis X = {x1, . . . , xk} for M and extend it to a
basis Y = {x1, . . . , xk, yk+1, . . . , yn} for V . Show that the matrix of A wrt Y has the form[

A11 A12

0 A22

]
where A11 ∈ Fk×k (and of course, 0 is the zero matrix in F(n−k)×k).

Definition 2.13 (Reducible linear transformations). Let A be a linear transformation and V be a vector
space. We say that A is reducible to (M, N) if M, N are invariant under A and V = M⊕N.

The above definition can also be turned around: Let M, N be two vector spaces, and let V = M ⊕ N.
Suppose A and B are linear transformations on M, N respectively. Then we can define linear transformation
C on V , denoted A⊕ B, by

C⟨x, y⟩ = ⟨Ax,By⟩.

Identifying M, N with subspaces of V , C is reducible to (M, N) with the restrictions of C to M and N being
A and B respectively.

Exercise 64. Fix A, M, N; suppose that X is a basis for M and Y is a basis for N. Show that A is reducible
to (M, N) if and only if the matrix of A wrt basis X ∪ Y has the form[

A11 0
0 A22

]
where A11 is the matrix of the restriction of A to M wrt X and A22 is the matrix of the restriction of A
to N wrt Y.

It is also easy to see that if C = A⊕ B, then Cn = An ⊕ Bn, and in general for polynomial p ∈ P we have
p(C) = p(A)⊕ p(B).

Another connection between direct sums and linear transformations is that of projections. These are a
very powerful algebraic tool in studying the concept of direct sum.
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Definition 2.14. If V = M⊕N - so that every x ∈ V may be written uniquely as a sum x+y with x ∈ M
and y ∈ N - then the projection on M along N is the linear transformation P on V defined by

Pz = x.

Theorem 2.15. A linear transformation E is a projection on some subspace if and only if it is idempotent, that
is, E2 = E or E(1− E) = 0.

Proof. =⇒ is trivial. For ⇐= , let
M = {z ∈ V : Ez = z}

and
N = {z ∈ V : Ez = 0}.

By linearity of E, these are subspaces. We claim that V = M ⊕ N. Indeed, for each z, we may write
z = Ez+ (1−E)z with the first term in M and the second in N. Further, if z ∈ M∩N, then z = Ez = 0. Thus
V = M⊕N. To finish, note that for each z ∈ V , Ez = E(Ez) and so E is the projection on M along N.

Exercise 65. Suppose that E is a projection on M along N.

1. Show that E is reducible to (M, N).

2. Show that M = {z : Ez = z} and N = {z : Ez = 0}.

3. Show that 1− E is also a projection; in fact, it is the projection on N along M.
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